Android的消息机制

  Android消息机制主要是指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。MessageQueue的中文翻译是消息队列,它的内部存储了一组消息,以队列的形式对外提供插入和删除的工作。虽然叫消息队列,但是它的内部存储结构并不是真正的队列,而是采用单链表的数据结构来存储消息队列。Looper可以理解为消息循环。由于MessageQueue只是一个消息的存储单元,它不能去处理消息,而Looper就填补了这个功能,Looper会以无限循环的形式去查找是否有新消息,如果有的话就处理消息,否则就等待。Looper中还有一个特殊的概念:ThreadLocal,ThreadLocal并不是线程,它的作用是可以在每个线程中存储数据。Handler创建的时候会采用当前线程的Looper来构造消息循环系统,ThreadLocal可以在不同的线程中互不干扰的存储并提供数据,Handler可以通过ThreadLocal轻松获取每个线程的Looper。需要注意的是,线程默认是没有Looper的,如果需要使用Handler就必须为现成创建Looper,我们经常提到的主线程,也叫UI线程,它就是ActivityThread,ActivityThread被创建时就会初始化Looper,这也是在主线程中默认可以使用Handler的原因。

ThreadLocal的工作原理

ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储以后,只能在指定的线程中才可以获取到存储的数据,对于其他线程来说则无法获取到,我们在使用的时候:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
final ThreadLocal<Boolean> mBooleanThreadLocal = new ThreadLocal<>();
new Thread("Thread#1"){
@Override
public void run() {
mBooleanThreadLocal.set(false);
Log.d("huangyuan","Thread#1" + mBooleanThreadLocal.get());
}
}.start();

new Thread("Thread#2"){

@Override
public void run() {
mBooleanThreadLocal.set(true);
Log.d("huangyuan","Thread#2" + mBooleanThreadLocal.get());
}
}.start();

  这样,我们虽然在不同的线程中访问的是同一个ThreadLocal对象,但是他们的值却是不一样的。这是因为不同的线程访问同一个ThreadLocal的get方法,ThreadLocal内部会从各自的线程中取出一个数组,然后再从数组中根据当前ThreadLocal的索引去查找出对应的value值。
ThreadLocal是一个泛型类,定义为public class ThreadLocal<T>,首先看ThreadLocal的set方法,如下:

1
2
3
4
5
6
7
8
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}

  上面的方法中,首先会通过getMap方法获取ThreadLocalMap(存储线程的ThreadLocal数据),ThreadLocalMap是ThreadLocal类的静态内部类,其内部包含了一个静态内部类Entry,声明如下static class Entry extends WeakReference<ThreadLocal>,ThreadLocalMap类中有一个Entry类型的数组private Entry[] table;,下面是set方法的具体实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
private void set(ThreadLocal key, Object value) {

// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.

Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);

for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal k = e.get();

if (k == key) {
e.value = value;
return;
}

if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}

tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}

ThreadLocal的get方法如下:

1
2
3
4
5
6
7
8
9
10
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null)
return (T)e.value;
}
return setInitialValue();
}

  从ThreadLocal的set和get方法可以看出,他们所操作的对象都是当前线程的ThreadLocalMap对象的table数组,因此在不同线程中访问同一个ThreadLocal的set和get方法,他们对ThreadLocal所做的读写操作仅限于各自线程的内部,这就是为什么ThreadLocal可以在多个线程中互不干扰的存储和修改数据。

消息队列的工作原理

  消息队列在Android中指的是MessageQueue,MessageQueue主要包含两个操作,插入和读取。读取操作本身会伴随着删除操作,插入和读取对应的方法分别为enqueueMessage和next,其中enqueueMessage的作用是往消息队列中插入一跳消息,而next的作用是从消息队列中取出一条消息并将其从消息队列中移除,尽管MessageQueue叫消息队列,但是它的内部实现并不是用的队列,实际上它是通过一个单链表的数据结构来维护消息列表,单链表在插入和删除上比较有优势。下面是enqueueMessage的实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}

synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}

msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}

// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}

从其实现来安,主要操作其实就是单链表的插入操作。
next的实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}

int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}

nativePollOnce(ptr, nextPollTimeoutMillis);

synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}

// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}

// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}

if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}

// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler

boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}

if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}

// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;

// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}

可以返现next方法是一个无限循环的方法,如果消息队列为空,那么next方法会一直阻塞在这里,当有消息到来时,next方法会返回这条消息并将其从单链表中移除

Looper的工作原理

  Looper在Android的消息机制中扮演者消息循环的角色,具体来说就是它会不停地从MessageQueue中查看是否有新消息,如果有新消息就会立刻处理,否则就一直阻塞在那里。首先看一下它的构造方法,在构造中它会创建一个MessageQueue也就是消息队列,然后将当前线程的对象保存起来,如下:

1
2
3
4
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}

  Handler的工作需要Looper,没有Looper的线程就会报错,我们可以通过Looper.prepare()即可为当前线程创建一个Looper,接着通过Looper.loop()来开启消息循环。Looper除了prepare方法外,还提供了prepareMainLoop方法,这个方法主要是给主线程也就是ActivityThread创建Looper使用的,其本质也是通过prepare方法来实现的。由于主线程的Looper比较特殊,所以Looper提供了一个getMainLooper方法,通过它可以在任何地方获取到主线程的Looper。Looper也是可以退出的,Looper提供了quit和quitSafely来退出一个Looper,二者的区别是:quit会直接突出Looper,而quitSafely只是设定一个退出标记,然后把消息队列中的已有消息处理完毕后才安全的退出。Looper退出后,通过Handler发送的消息会失败,这个时候Handler的send方法会返回false。在子线程中,如果手动为其创建了Looper,那么在所有的事情完成以后应该调用quit方法来总之消息循环,否则这个子线程就会一直处于等待的状态,而如果退出Looper以后,这个线程就会立刻终止,因此建议不需要的时候终止Looper。
Looper最重要的一个方法是loop方法,只有调用了loop后,消息循环系统才会真正的起作用,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;

// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();

for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}

// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}

final long traceTag = me.mTraceTag;
if (traceTag != 0) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}

if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}

// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}

msg.recycleUnchecked();
}
}

  loop方法是一个死循环,唯一跳出循环的方式是MessageQueue的next方法返回了null,当Looper的quit方法被调用时,Looper就会通知消息队列退出,当消息队列被标记为退出状态时,它的next方法就会返回null,也就是说,Looper必须退出,否则loop方法就会无限循环下去,loop方法会调用MessageQueue的next方法来获取新消息,而next方法是一个阻塞操作,当没有消息时,next方法会一直阻塞在那里,这也导致loop方法一直阻塞在那里,如果MessageQueue的next方法返回了新消息,Looper就会处理这条消息, msg.target.dispatchMessage(msg),这里的 msg.target是发送这条消息的handler对象,这样Handler发送的消息最终又交个它的 dispatchMessage(msg);方法来处理了,但是这里不同的是,Handler的dispatchMessage方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码逻辑切换到指定的线程中去执行了。

Handler的工作原理

Handler的工作主要包含消息的发送和接收过程。消息的发送可以通过post的一系列方法以及send的一系列方法来实现,post的一系列方法最终是通过send的一列方法来实现的。发送一条消息的典型过程如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}

  可以发现,Handler发送消息的过程仅仅是向消息队列中插入了一条消息,MessageQueue的next方法就会返回这条消息给Looper,Looper收到消息后就开始处理了,最终消息由Looper交由Handler处理,即Handler的dispatchMessage方法会被调用,这时Handler就是进入了处理消息的阶段。dispatchMessage的实现如下:
1
2
3
4
5
6
7
8
9
10
11
12
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}

Handler处理消息的过程如下:

  1. 检查Message的callback是否为null,不为null就通过handleCallback来处理消息,Message的callback是一个Runnable对象,实际上就是Handler的post方法所传递的Runnable参数。handleCallback的逻辑如下:
    1
    2
    3
    private static void handleCallback(Message message) {
    message.callback.run();
    }
  2. 其次,检查mCallback是否为null,不为null就调用没CallBack的HandlerMessage方法来处理消息,Callback是个接口,它的定义如下:
1
2
3
4
5
6
7
8
9
10
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public interface Callback {
public boolean handleMessage(Message msg);
}

通过Callback可以采用如下方式来创建Handler对象:Handler handler = new Handler(callback)。

  1. 最后,调用Handler的handleMessahe方法来处理消息。

以上


Android的消息机制
https://blog.huangyuanlove.com/2017/03/23/Android的消息机制/
作者
HuangYuan_xuan
发布于
2017年3月23日
许可协议
BY HUANG兄